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Does Mathematics Instruction
for Three- to Five-Year-Olds

Really Make Sense?

○ ○ ○ ○ ○ ○ ○

ver the past 25 years, researchers have accumulated
a wealth of evidence that children between three and
five years of age actively construct a variety of fun-

damentally important informal mathematical concepts and
strategies from their everyday experiences. Indeed, this evi-
dence indicates that they are predisposed, perhaps innately,
to attend to numerical situations and problems.

It is important to note too that the mathematical ideas
preschoolers construct are in some cases relatively abstract.
Teachers of young children should be aware of the impres-
sive informal mathematical strengths of children in the early
years and recognize that it does make sense to involve them
in a variety of mathematical experiences.

The purpose of this article is to review some of the recent
research on young children’s number and arithmetic con-
cepts and skills. This research provides valuable insights
into the extent of young children’s mathematical learning—
insights that can help us address the question of how best to
provide mathematics experiences for young children.

What mathematics can three- to
five-year-olds learn?

Over the course of the twentieth century, psychologists came
to dramatically different conclusions about preschoolers’ math-
ematical competence. Their focus shifted from trying to find
what children can’t do to trying to reveal what they can do.

Earlier views

Behaviorism. Behavioral theorists have shaped the conven-
tional wisdom about mathematical teaching and children’s
learning to this day (Ginsburg, Klein, & Starkey 1998).
Thorndike, for example, concluded that young children were
so mathematically inept that “little is gained by [doing] arith-
metic before grade 2, though there are many arithmetic facts
that they can [memorize by rote] in grade 1” (1922, 198).
According to association theorists, children had to be re-
warded (bribed) to learn mathematics, understanding was
not central to learning useful mathematical skills, and stu-
dents had to be spoon-fed mathematics because they were
uninformed and helpless. This view served as the rationale
for the drill approach (Thorndike 1922) and, years later,
shaped the doctrine of direct instruction (Bereiter & Engel-
mann 1966). The lecture-and-drill method remains to this day
the most widely used way to teach children mathematics in
the primary grades.

Piaget’s constructivism. Jean Piaget’s (1965) research of-
fered a very different view of mathematical teaching and
learning (Kamii 1985). In Piaget’s constructivist view, young
children have a natural curiosity. For example, they have an
inherent desire to find patterns and resolve problems, the
essence of mathematics.

For Piaget, the construction of mathematical understand-
ing was the heart of real development in mathematics learn-
ing. For example, reflecting on the part-whole relations un-
derlying addition, such as a whole is the sum of its parts and
greater than any single part, advances mathematical think-
ing, while memorization of number facts by rote does not.

In Piaget’s view, children actively construct their math-
ematical knowledge by interacting with their physical and
social worlds. By listening to their parents, older siblings,
and peers, for instance, children detect counting patterns,
devise counting rules, and sometimes overapply these rules
rather than passively absorb (imitate) the counting-word se-
quence they hear. A clear indication of this is rule-governed
counting errors, such as when children say “fourteen,
fiveteen, sixteen,” or “twenty-eight, twenty-nine, twenty-ten”
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(Baroody with Coslick 1998). (It seems unlikely that any par-
ents, siblings, or preschool teachers model and reward
fiveteen or twenty-ten.)

Today abundant evidence (Ginsburg, Klein, & Starkey
1998) exists to support the views of Piaget. Interestingly,
however, in Piaget’s (1965) view, children so young are not
capable of abstract concepts or logical thinking. Thus, he
concluded, they are not capable of constructing a true con-
cept of number or an understanding of arithmetic.

Recent developments

In the last 25 years, psychologists have revealed a more
optimistic portrait of preschoolers’ mathematical compe-
tence. Summarized below are findings regarding concepts fun-
damental to number sense and an understanding of school (for-
mal) mathematics. By understanding what young children know
about these foundational concepts and can do with them,
teachers can incorporate developmentally appropriate activi-
ties to nurture children’s mathematical development.

Informal concept of numerical equivalence. An ability

to identify equivalent collections (e.g., recognizing l l,

H H, ¤ ¤, and E E all as pairs or 2; recognizing

H H H, ¤ ¤ ¤, and E E E all as trios or 3, and so

forth) is fundamental to understanding number. Research in-
dicates that three-year-olds can already recognize equiva-
lence between small collections of objects or pictured ob-
jects—that is, visually match collections or pictures of 1 to
4 items (e.g., Huttenlocher, Jordan, & Levine 1994). For ex-
ample, they can identify n n n and n as “the same”

n n

and n n n and n n as “not the same.” Moreover, four-
year-olds, but not three-year-olds, can make auditory-visual
matches such as equating the sound of three dings with the
sight of three dots (Mix, Huttenlocher, & Levine 1996) and
accurately compare sequential sets with static ones, such as
three jumps by a puppet or three light flashes with three dots
(Mix 1999).

What these results seem to indicate is that three-year-olds
have already developed a non-
verbal representation of num-
ber. Whether this represen-
tation consists of a mental
picture, mental markers (analo-
gous to tallies), or something
else is not entirely clear. Nor
is it clear whether this repre-
sentation is an exact one or an
estimate. In any case, the key
finding is that three-year-olds
already have a reasonably ac-
curate way of representing
and comparing small collec-
tions before they even learn to
count them.

Between three-and-a-half
and four years of age, chil-
dren’s development of verbal

and object-counting skills provides them a more powerful
tool for representing and comparing numbers. In addition to
allowing preschoolers to make comparisons of small sets,
their counting-based representation enables them to com-
pare collections larger than four items. Specifically, by count-
ing and visually comparing small collections, children can
recognize the same number-name principle: Two collections
are equal if they share the same number name, despite dif-
ferences in the physical appearance of the collection
(Baroody with Coslick 1998). Because it is a general prin-
ciple, young children can use it to compare any size collec-
tion that they can count.

Similarly by counting and visually comparing two unequal
collections, preschoolers can further discover the larger-
number principle: The later a number word appears in the
counting sequence, the larger the collection it represents—
for example, five represents a larger collection than four be-
cause it follows four in the counting sequence. Once children
can automatically cite the number after another in the count-
ing sequence—for example, the number after four is five—
they can use the larger-number principle to mentally com-
pare two numbers (e.g., Who is older, someone 9 or someone
8?—the nine-year-old because 9 comes after 8).

This relatively abstract number skill has many everyday
applications and can be used for even huge numbers
(1,000,129 is greater than 1,000,128 because, according to
our counting rules, the former comes after the latter). Typi-
cally, children can name the number after another up to 10
and can use this knowledge and the larger-number principle
to mentally compare any two numbers up to 5 before they
enter kindergarten (four-and-a-half to five-and-a-half years of
age). By the time they leave kindergarten (at five-and-a-half
to six years old), children typically can compare any two
numbers at least up to 10.

Informal addition and subtraction. An understanding of
addition and subtraction is fundamental to success with
school mathematics and everyday life. Recent research in-
dicates that children start constructing an understanding of
these arithmetic operations long before school. During the
preschool years, they develop the ability to solve simple
nonverbal addition or subtraction problems (Huttenlocher,
Jordan, & Levine 1994).

Such problems involve show-
ing a child a small collection (1
to 4 items), covering it, adding or
subtracting an item or items, and
then asking the child to indicate
how many items there are now
by counting out an appropriate
number of disks. For one item
plus another item (1 + 1), for in-
stance, a correct response would
involve counting out a set of two
disks rather than, for instance,
one disk or three disks.

In one study (Huttenlocher,
Jordan, & Levine 1994), for ex-
ample, most children who had
recently turned three years old
could correctly solve problems
involving “1 + 1” or “2 – 1” (that©
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is, they could imagine adding one object to another or could
mentally subtract one object from a collection of two objects).
By age four most children could mentally add and subtract
small numbers of items such as “1 + 2,” “2 + 1,” “3 – 1,” “3 – 2.”

How do children so young manage these feats of simple
addition and subtraction? They apparently can reason
about their mental representations of numbers. For 2 + 1, for
instance, they form a mental representation of the initial
amount (before it is hidden from view), form a mental rep-
resentation of the added amount (before it is hidden), and
then can imagine the added amount added to the original
amount to make the latter larger. In other words, they un-
derstand the most basic concept of addition—it is a trans-
formation that makes a collection larger. Similarly, they
understand the most basic concept of subtraction—it is
a transformation that makes a collection smaller.

Later, but typically before they receive formal arithmetic
instruction in school, children can solve simple addition and
subtraction word problems (Huttenlocher, Jordan, & Levine
1994), including those involving numbers larger than 4. How
do they manage this? Basically, children decipher the mean-
ing of the story by relating it to their informal understand-
ing of addition as a “make-larger” transformation or their
informal understanding of subtraction as a “make-smaller”
transformation (e.g., Carpenter, Hiebert, & Moser 1983;
Baroody with Coslick 1998).

At least initially children use objects like blocks or fingers
to model the type of transformation indicated by a word
problem. Consider the following problem:

Rafella helped her mom decorate five cookies before lunch.
After lunch she helped decorate three more cookies. How
many cookies did Rafella help decorate altogether?

Young children might model this problem by counting out
5 blocks to represent the initial amount, counting out 3 more
blocks to represent the added amount, and then counting all
the blocks put out to determine the solution.

Research further reveals that children invent increasingly
sophisticated counting strategies to determine sums and
differences (Carpenter, Hiebert, & Moser 1983; Baroody with
Coslick 1998). At some point, children abandon using objects
and rely on verbal counting procedures. To solve the prob-
lem above, they might count up to the number representing
the initial amount (“one, two, three, four, five”) and continue
the count three more times to represent the amount added
(“six is one more, seven is two more, and eight is three
more—eight cookies altogether”). One shortcut many chil-
dren spontaneously invent is to start with the number rep-
resenting the initial amount instead of counting from one:
“Five; six is one more, seven is two more, and eight is three
more—eight cookies altogether” (Baroody 1995).

As with making number comparisons, children’s informal
addition is initially relatively concrete in the sense that they
are working nonverbally with real collections or mental repre-
sentations of collections of 4 or less. Later, as they master and
can apply their counting skills, they extend their ability to en-
gage in informal arithmetic both in more abstract ways, such
as word problems, and even later in symbolic expressions,
such as 2 + 1 = ? , and with numbers greater than 4.

Part-whole relations. The construction of a part-whole
concept, the understanding of how a whole is related to its

parts, is an enormously important achievement. For ex-
ample, it is considered the conceptual basis for understand-
ing and solving missing-addend word problems, such as
Problems A and B below, and missing-addend equations,
such as ? + 3 = 5 and ? – 2 = 7.

• Problem A. Angie bought some candies. Her mother
bought her three more candies. Now Angie has five candies.
How many candies did Angie buy?

• Problem B. Blanca had some pennies. She lost two pen-
nies while playing. Now she has seven pennies. How many
pennies did Blanca have before she started to play?

Young children’s inability to solve missing-addend word
problems and equations has been taken as evidence that
they lack understanding of the part-whole concept. Some
have interpreted such evidence as support for Piaget’s
(1965) conjecture that the pace of cognitive development
limits the mathematical concepts children can learn and have
concluded that instruction on missing addends is too difficult
to be introduced in the early primary grades (Kamii 1985).

Results of a study by Sophian and McCorgray (1994) suggest
otherwise. These researchers gave four-, five-, and six-year-olds
problems like Problems A and B. Problems were read to a child
and acted out using a stuffed bear and pictures of items. Al-
though five- and six-year-olds typically had great difficulty de-
termining the exact answers to such problems, they gave an-
swers that were at least in the right direction. For Problem A,
for instance, they knew that the answer (a part) had to be less
than 5 (the whole). For Problem B, they recognized that the
answer (the whole) had to be larger than 7 (the larger of the
two parts). These results suggest that five- and six-year-olds
can reason about missing-addend situations and, thus, have
a basic understanding of part-whole relations.

Equal partitioning. Equal partitioning is the process of sub-
dividing a collection of items or a quantity, such as the surface
area of a pizza, into equal-size parts. It is the conceptual basis
for division, measurement, and fractions. Research (Davis &
Pitkethly 1990) has shown that many children of kindergarten
age can respond appropriately to fair-sharing situations or
problems, such as the example below:

Three sisters, Martha, Marta, and Marsha, were given a plate
of six cookies by their mom. If the three sisters shared the
six cookies fairly, how many cookies would each sister get?

Some children solve this type of problem by using a
divvying-up strategy; for example, children count out the 6
cookies to represent the amount, then deal out the cookies
one at a time to each of 3 piles until all have been passed
out, and then count the number in each pile to determine
the solution. In effect, research suggests that even the op-
eration of division can be introduced to children as early
as kindergarten.

Informal fraction addition and subtraction. Perhaps most
surprising of all is the research indicating that preschoolers can
understand simple fraction addition and subtraction. Mix,
Levine, and Huttenlocher (1999) presented to three-, four-, and
five-year-olds nonverbal problems that involved, first, showing
half of a circular sponge and then putting it behind a screen;
next, showing half of another circular sponge and then also
putting it behind the screen; and finally, presenting four
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choices—one-quarter of a sponge, one-half of a sponge, three-
quarters of a sponge, and a whole sponge—and asking which
was hidden behind the screen. The three-year-olds were cor-
rect only 25% of the time. They responded at a chance level—
no better than could be expected by random guessing. The
four- and five-year-olds, however, responded at an above-
chance level. For instance, more than half were correct on prob-
lems involving “¼ + ½,” “¼ + ¾,” “½ – ¼,” and “1 – ¼.”

Conclusion

Preschoolers do have impressive informal mathematical
strengths in a variety of areas as recent research indicates.
Given this and their natural inclination for numerical reason-
ing, it makes sense to involve children in engaging, appropri-
ate, and challenging mathematical activities. The key question
is, How should preschoolers be taught mathematics?

How should preschoolers be
taught mathematics?

In this section I first discuss a new approach for teaching
mathematics and then delineate some key implications for
early childhood mathematics instruction.

The investigative approach

Consistent with constructivist theory and its supporting
evidence, the National Council of Teachers of Mathematics
(NCTM 1989, 1991) has recommended shifting from a traditional
instructional approach to an approach that better fosters the
mathematical power of children. As will be evident below, this
new approach is consistent with the teaching guidelines out-
lined in the revised edition of Developmentally Appropriate Prac-
tice in Early Childhood Programs (Bredekamp & Copple 1997).

What is mathematical power? Mathematical power has
three components. The first is a positive disposition to learn
and use mathematics. This includes the beliefs and confidence
needed to tackle challenging problems. Teachers need to help

children develop the belief that everyone is capable
of understanding mathematics and solving math-
ematical problems.

The second element of mathematical power is un-
derstanding mathematics. This includes appreciat-
ing how school mathematics relates to everyday
life, seeing the connections among mathematical
concepts, and linking procedures to their concep-
tual rationale. To promote meaningful learning,
then, teachers must help children (a) relate school-
taught symbols and procedures to their informal,
everyday experience; (b) consider how different
ideas such as addition and subtraction are related
(e.g., adding 1 can be undone by subtracting 1, and
3 – 2 = ? can be thought of as 2 + ? = 3); and (c) learn
the whys as well as the hows of mathematics.

The third part of mathematical power is develop-
ing an ability to engage in the processes of math-
ematical inquiry. This includes making and testing
conjectures, finding patterns in the world around us
(inductive reasoning), problem solving, and logical

(deductive) reasoning. An especially important but often
overlooked process is communicating about mathematics.
To promote the ability to engage in mathematical inquiry,
teachers need to find challenging but developmentally ap-
propriate problems and encourage children to discuss with
others, including their peers, their suggestions for solving
them and their solutions.

Why is mathematical power important? A positive dis-
position toward mathematics underlies the confidence and
perseverance necessary to tackle challenging problems and
lifelong learning of mathematics. Understanding greatly fa-
cilitates remembering and applying mathematics (Hatano
1988; Hiebert & Carpenter 1992; Rittle-Johnson & Alibali
1999). Meaningful learning requires less drill and practice
than does learning by rote. Moreover, because children can
apply what they understand, they can make connections and
learn new material more easily on their own. Problem-solving
and other inquiry skills are increasingly necessary in a progres-
sively more complex world.

How can instruction foster mathematical power? A tra-
ditional instructional approach unfortunately robs children of
mathematical power (Baroody with Coslick 1998). To better fos-
ter mathematical power, NCTM (1989, 1991) recommends that
instruction be purposeful, meaningful, and inquiry based—
what has been called the “investigative approach” (Baroody
with Coslick 1998). In this approach instruction begins with a
worthwhile task, one that is interesting, often complex, and
creates a real need to learn or practice mathematics. Expe-
riencing mathematics in context is not only more interest-
ing to children but more meaningful—both of which make
learning it more likely (Donaldson 1978; Hughes 1986).

In the investigative approach a teacher helps children
build on what they already know to learn new concepts or
procedures. By connecting new information or a problem to
existing knowledge, children are far more likely to under-
stand it. The instruction involves children in making conjec-
tures, solving problems, inductive and deductive reasoning,
and communicating their ideas, findings, or conclusions.
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Teachers can choose or design math games to raise a par-
ticular issue or practice a particular skill (Kamii 1985;
Baroody 1989; Baroody with Coslick 1998). For example,
while playing Race Cars, Ari rolled a large balsa-wood die,
and the side with 5 dots came up. He immediately recognized
this as 5 (pattern recognition) and moved his car 5 spaces on
the race track (counting out a collection of spaces). Bret then
rolled the die and 5 dots came up again. He counted the dots
(verbal counting and counting a collection) and, beginning with
the space on which his car was resting, counted 5 spaces.
“Hey,” Bret complained, “I started on the same space as Ari,
rolled a 5 like him, and now I’m behind him. How can that be?”

Through a discussion guided by the teacher, the players
concluded that Bret counted as one the space he was on. The
teacher asked Bret, “If you rolled a one, what would that
mean?” Bret answered, “I could move one space.” “Show me,”
asked the teacher. Again Bret started to count as one the
space he was on but realized it would mean his car would
not advance. To help Bret and others remember how to
count out spaces correctly, the teacher recommended start-
ing their counts with zero, using the whole-number sequence
0, 1, 2, 3, . . . , rather than the natural-number sequence
1, 2, 3, . . . . The game provided verbal- and object-counting
practice, created a real need for discussing and correcting
a common counting error, and brought about an opportunity
for introducing the whole-number series.
• Children’s literature can provide another rich source of prob-
lems and content learning (see Burns 1992; Thiessen &
Matthias 1992; Whitin & Wilde 1992; Fromboluti & Rinck
1999). Consider, for example, The Doorbell Rang  by Pat
Hutchins (1986). The story begins with a mother presenting
a plate of cookies to her two children and instructing them
to share them fairly. Before reading on, a teacher could ask
how this could be done and how many cookies each child
would get. Pairs of children could be given chips, for in-
stance, to model the situation, and each team could then
share its strategy. Possibly at least one pair will suggest us-
ing an equal partitioning (divvy-up) strategy. As a follow-up
activity, the children could role-play this story and others
that involve mathematical concepts.

Meaningful instruction.  Teachers should promote
meaningful learning rather than learning by rote. They
should promote and build on children’s informal mathemati-
cal knowledge and help them see patterns and relations.

• Foster and build on children’s informal mathematical knowl-
edge. It is especially important to encourage preschoolers’
use of verbal, object, and finger counting to represent, think
about, and operate on numbers. Counting is a powerful tool
for extending young children’s nonverbal numerical and ar-
ithmetical competencies. Opportunities to learn and prac-
tice counting skill should be abundant, and children’s use of
counting solutions should be praised.
• Focus on helping children see patterns and relations. Instruc-
tion on mastering the verbal-counting sequence should con-
centrate on helping preschoolers discover counting patterns
(e.g., the teen numbers are largely a repetition of the origi-
nal sequence of numbers + the word teen: six + teen, seven
+ teen, . . . ) and the exceptions to these patterns (e.g., “Al-
though fiveteen is a good name for the number after fourteen,
most people call it fifteen”). Playing an error-detection game

There is no better way to become proficient at these inquiry
skills than to engage in real mathematical inquiries. Planning
activities that are purposeful, meaningful, and inquiry based
is at the heart of good early childhood teaching practice
(Bredekamp & Copple 1997).

Implications for early childhood
mathematics instruction

The investigative approach is particularly well suited for
preschool children and their mathematics instruction. Below
are some suggestions for making mathematics experiences for
young children purposeful, meaningful, and inquiry based.

Purposeful instruction. There are a variety of ways to
make mathematics instruction purposeful, such as using ev-
eryday situations, children’s questions, games, and chil-
dren’s literature. Teachers can do so by finding and creat-
ing worthwhile tasks that create a real need for learning and
practicing mathematics.

• Everyday preschool activities provide numerous opportunities
to learn or practice mathematics (Kamii 1985; Baroody with
Coslick 1998; Fromboluti & Rinck 1999). For instance, when
preparing snack, table setters for each table can be asked to
count the number of children in their group present that day
to determine the number of place settings needed (counting a
collection) and then put out for each child in the group a car-
ton of milk, piece of fruit, paper plate, utensil, or whatever is
needed (counting out a collection or one-to-one matching).

Note that such tasks might involve other skills such as ad-
dition (e.g., My group usually has five, but Clayton is sick
today, so we have ____). Also note that teachers should not
assign such tasks to children who are not developmentally
ready (e.g., the atypical four-year-old who cannot verbally
count to at least five or six) and should leave enough time
to help those who are developmentally ready but who have
not learned or mastered a needed skill.
• Children’s questions can provide invaluable teachable mo-
ments. When Diane asks, “My birthday is next week, how old
will I be? Will I be older than Barbara?” the teacher can re-
spond by saying, “Class, Diane has some interesting ques-
tions with which she needs help. If she is three years old now,
how can she figure out how old she’ll be on her next birth-
day?” Note that the teacher asked the group how to solve
the problem, she did not simply give the solution (“She will
be four”). The teacher could then follow up by posing a prob-
lem involving both number-after and number-comparison
skills: “If Barbara is five years old and Diane is four years old,
how could we figure out who is older?”

Answering their own real questions can provide children
with a powerful incentive to engage in mathematical inquiry
and to explore and practice mathematical content. Further-
more, such conversations about mathematics provide teach-
ers with a rich source of information about children’s present
and emerging understandings of number and arithmetic.
• Games provide a natural, interesting, and structured way to
explore or practice mathematics. For children, play is a natu-
ral way of exploring their world and mastering skills for cop-
ing with it (Bruner, Jolly, & Sylva 1976). Playing math games
can be an enjoyable way of raising interesting questions and
practicing mathematical skills.
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in which a muppet or confused adult character tries to count
and children help by pointing out errors such as “. . . nine-
teen, tenteen” is an enjoyable way to learn and practice
counting rules and their exceptions.

Inquiry-based instruction. Teachers can foster positive
dispositions toward mathematics by involving children in
inquiry-based instruction. This includes promoting beliefs
such as, “I can solve mathematical problems and do math-
ematics,” which at heart are attempts to find patterns in or-
der to solve problems. Inquiry-based instruction can also
promote meaningful learning when, for instance, children
discover a mathematical relation or listen to their peers’ dis-
coveries. Finally, it can help inquiry skills such as the abil-
ity to reason about and solve real or challenging problems.

Involving children in inquiry-based instruction means that
teachers should encourage them to discover and do as much
for themselves as possible. This does not mean that teach-
ers should simply allow children to engage in free play all
the time. Learning is more likely to occur if wiser adults or
older children mediate younger children’s experiences (Vy-
gotsky 1968; Lave, Murtaugh, & de la Rocha 1984; Durkin et
al. 1986; Saxe, Guberman, & Gearhart 1987; Leino 1990; Rogoff
1990; Blevins-Knabe & Musun-Miller 1996; Anderson 1997).
Some ways teachers can mediate learning are noted below.

• Regularly pose worthwhile tasks, offer thought-provoking and
interesting questions or problems, and encourage children to pur-
sue, answer, or solve them themselves. A teacher asked Suzie, a
kindergartner, what she thought was the largest number. Suzie
quickly answered, “A million.” The teacher then asked what the
number after a million might be. The girl thought for a moment
and responded, “A million and one.” Asked what she supposed
the next number might be, Suzie answered quickly, “A million
and two—so there is no biggest number.”

The teacher’s questions prompted Suzie to reflect on her
knowledge of numbers, apply her knowledge of counting
rules to continue the counting sequence past a million, and
then deduce from this experience that the counting se-
quence in theory could go on forever—that is, construct a
concept of infinity.

• In general, prompt children’s reflection rather than provide
feedback. When children have difficulty arriving at a solution
or arrive at an incorrect solution, provide hints, ask ques-
tions, or otherwise promote their thinking rather than sim-
ply give them the correct solution. For example, Kamie con-
cluded that 5 and 2 more must be 6. Instead of telling the girl
she was wrong and that the correct sum was 7, her teacher
asked, “How much do you think 5 and 1 more is?” After Kamie
concluded it was 6, she set about recalculating 5 and 2 more.
Apparently, she realized that both 5 and 1 more and 5 and 2
more could not have the same answer. The teacher’s question
prompted her to reconsider her first answer.

• Encourage peer-peer dialogue. Other children can some-
times explain informal mathematical ideas or strategies to
a child better than an adult can. Furthermore, sharing ideas
with others can help children clarify their own thinking. In-
deed, because peer-peer dialogues can often result in dis-
agreements and disagreements can prompt children to re-
consider their ideas, dialogue can be an invaluable way of
advancing mathematical thinking.

Conclusion

Preschoolers are capable of mathematical thinking and
knowledge that may be surprising to many adults. Teachers
can support and build on this informal mathematical com-
petence by engaging them in purposeful, meaningful, and
inquiry-based instruction. Although using the investigative
approach requires imagination, alertness, and patience by
teachers, its reward can be increasing significantly the math-
ematical power of children.
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